Transcriptome of the Lymantria dispar (Gypsy Moth) Larval Midgut in Response to Infection by Bacillus thuringiensis

نویسندگان

  • Michael E. Sparks
  • Michael B. Blackburn
  • Daniel Kuhar
  • Dawn E. Gundersen-Rindal
چکیده

Transcriptomic profiles of the serious lepidopteran insect pest Lymantria dispar (gypsy moth) were characterized in the larval midgut in response to infection by Bacillus thuringiensis kurstaki, a biopesticide commonly used for its control. RNA-Seq approaches were used to define a set of 49,613 assembled transcript sequences, of which 838, 1,248 and 3,305 were respectively partitioned into high-, mid- and low-quality tiers on the basis of homology information. Digital gene expression profiles suggested genes differentially expressed at 24 hours post infection, and qRT-PCR analyses were performed for verification. The differentially expressed genes primarily associated with digestive function, including α-amylase, lipase and carboxypeptidase; immune response, including C-type lectin 4; developmental genes such as arylphorin; as well as a variety of binding proteins: cellular retinoic acid binding protein (lipid-binding), insulin-related peptide binding protein (protein-binding) and ovary C/EBPg transcription factor (nucleic acid-binding). This is the first study conducted to specifically investigate gypsy moth response to a bacterial infection challenge using large-scale sequencing technologies, and the results highlight important genes that could be involved in biopesticide resistance development or could serve as targets for biologically-based control mechanisms of this insect pest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of clonal variation among hybrid poplars on susceptibility of gypsy moth (Lepidoptera: Lymantriidae) to Bacillus thuringiensis subsp. kurstaki.

Trees in the genus Populus can provide substantial commercial and ecological benefits, including sustainable alternatives to traditional forestry. Realization of this potential requires intensive management, but damage by defoliating insects can severely limit productivity in such systems. Two approaches to limiting these losses include cultivation of poplar varieties with inherent resistance t...

متن کامل

Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin.

We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that th...

متن کامل

Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis

The phenological synchrony between the emergence of overwintering herbivorous insects and the budding of host plants is considered a crucial factor in the population dynamics of herbivores. However, the mechanisms driving the interactions between the host plant, herbivores, and their pathogens are often obscure. In the current study, an artificially induced phenological asynchrony was used to i...

متن کامل

The Effect of Diet on Gypsy Moth (Lymantria &par) Larval Midgut pH, and Its Relationship with Larval Susceptibility to a Baculovirus

The midgut pH of gypsy moth (Lymantria dispar) larvae was significantly lower when larvae were fed acidic foliage. At 30 min after the start of a feeding bout, larvae feeding on bigtooth aspen (foliage pH = 6.04) had average midgut pH levels of 10.16, while larvae feeding on red oak foliage (foliage pH = 3.84) had average midgut pH levels of 9.36. Midgut pH was also significantly reduced when l...

متن کامل

Response of the Gypsy Moth, Lymantria dispar to Transgenic Poplar, Populus simonii x P. nigra, Expressing Fusion Protein Gene of the Spider Insecticidal Peptide and Bt-toxin C-peptide

The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω-ACTX-Ar1 sequence coding for an ω-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013